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SUMMARY

Classical boundary-layer theory is inadequate to deal with
the problem of flow separation owing to its underlying assumption
that the boundary layer has an insignificant effect on the exter-
nal stream., This difficulty is resolved by the modern theory
which includes interaction with the external flow. This newer
theory is described from the viewpoint of the asymptotic triple-
deck structure. Several triple-deck studies are reviewed with
emphasis on results of interest in aeronautical applications.

INTRODUCTION

Separated flow occurs when an attached boundary layer en-
counters a downstream compressive disturbance of sufficient magni-
tude. Observations show that the separation point lies at a
rather long distance upstream of the disturbance, contradicting
the inherent nature of Prandtl's boundary layer theory that no
upstream influence can occur. Crocco and Lees (ref. 1) have shown
that coupling the pressure of the external inviscid flow to the
displacement thickness of the boundary layer permits upstream in-
fluence to be consistent with the boundary-layer equations. This
concept led to the integral methods of Lees and Reeves (ref. 2),
and others, for viscous interacting flows. However, the correct
mathematical structure of such flows was not given until the
papers of Stewartson and Williams (ref. 3) and of Neiland (ref. 4)
on self-induced separation in supersonic flows at high Reynolds
number. Independently, the same asymptotic structure was shown to
hold for incompressible flow at the trailing edge of an airfoil by
Stewartson (ref. 5) and by Messiter (ref. 6). This flow structure,
which Stewartson has named "the triple deck", has been found to be
relevant in a wide variety of applications. The purpose of this
paper is to review several of these triple-deck studies that are
of interest in aeronautical applications.

THE TRIPLE DECK

A schematic of the triple-deck structure is shown 1n figure 1.
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The parameter e = Re—1/8 (Re - Reynolds number) has been standard-
ized in the theory because of the occurrence of various integer
powers of e. As indicated in the figure, the streamwise extent of
the triple deck is of order e3, while the thicknesses of the lower,
main, and upper decks are of order ¢, e, and €3, respectively.
The dominant physical processes for large Re in each of the decks
are as follows:

(1) The main deck is the continuation of the upstream
boundary layer. It is essentially inviscid because of
the short length (e3) of the interaction region. A slip
velocity is produced at the base of the main deck by the
pressure interaction.

(2) The lower deck is a viscous sublayer in which the slip
velocity at the base of the main deck is reduced to zero
at the wall. Because it is thin, the lower deck flow is
governed by the boundary-layer equations. However, the
condition of matching to the upper deck provides an un-
conventional boundary condition on these equations.

(3) The upper deck is a subregion of the outer potential
flow where the pressure adjusts to the streamline dis-—
placement produced by the viscous flow below, thus com-
pleting the interaction process. For supersonic flow,
the upper deck equations of motion reduce to the classi-
cal wave equation with simple-wave solutions. For sub-
sonic flow, Laplace's equation results, with the usual
Hilbert integrals governing the interaction between
pressure and displacement thickness. In either subsonic
or supersonic flow, upstream influence is permitted by
the interaction process.

The mathematilical details of triple-deck theory can be found in
references 3 through 6; we shall concentrate here on some results

of the theory.
COMPRESSION-RAMP STUDIES

Supersonic flow past a compression corner is a fundamental
problem in aerodynamics. The inviscid flow is especially simple,
with two uniform flow states divided by an oblique shock wave
originating at the corner. The classical boundary-layer problem,
however, has no solution since the upstream boundary layer is ter-
minated by the infinitely adverse pressure gradient associated
with the corner. Experimental observations show that the actual
pressure rise does not occur dilscontinuously as inviscid theory
predicts, but instead is smeared out over some interaction dis-
tance, with boundary-layer separation occurring ahead of the
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corner. This problem is natural for triple-deck theory, and solu-
tions taken from references 7 and 8 are shown in figure 2. Here

P, X, and o are scaled variables representing the pressure p¥, dis-
tance from the corner x¥, and ramp angle o¥:

p*¥ = pX + p¥ u%2 Re—~1/%¢ 1/% 31/2(M2-1)-1/% p(X)

x*/L = Re”3/8 ¢3/8 y-5/% (M2-1)~3/8(m, /T )3/2 X

a¥ = Re=1/upl/n Ai/z(Mg 1)1/4 o

The Reynolds number Re is based on conditions in the undisturbed
inviscid flow ahead of the ramp (indicated by subscript «) and on
the length L from leading edge to corner. C denotes the Chapman-~
Rubesin constant and A is the Blasius constant (0.33206). p, u, T,
and M are"the usual symbols for density, velocity, temperature and
Mach number.

The results of figure 2 show a smooth monotonically rising
wall pressure for o below the value for incipient separation,
ai = 1.57. (Note that classical theory would predict separatilion
for any o¥ > 0). For o increasing above aj, an inflection point
appears and rapidly forms the pressure plateau observed in many
experiments. The plateau pressure level 1s in close agreement
with Williams value P = 1.8 for self-induced separation (ref. 9),
corresponding to an obstacle far downstream of separation. In
figure 2, the initial pressure distribution up to the plateau
level is pushed upstream with invariant shape as o increases. This
portion of the pressure distribution reproduces Williams' free-—
interaction solution, suggesting that as o + « (o¥ increasing be-
yond the Re-*'/" scale) the separation point is pushed upstream to
infinity (the interaction length exceeds the Re—3/8 scale). 1In
turn, this suggests that for large o(a* beyond the Re-!/% scale),
the separation region up to the plateau is still contained in the
triple-deck structure, but that the constant pressure plateau and
subsequent reattachment vregion develop on different scales.

An analysis of the flow structure based on these ideas is
given in reference 10. The principal results are as follows. For
ramp angle o¥ of order one, the separation bubble is long, of the
order of the distance L from leading edge to corner in length. The
reattachment process is short, however, with length of the order
of the boundary-layer thickness (i.e., of order Re—1/2). Because
of its small scale, reattachment is predominantly inviscid in
nature, much as hypothesized by Chapman (ref. 11). Hence, the
asymptotic analysis for large Reynolds number reveals the separa-
ting-reattaching flow to be three coupled byt distinct regions:
the separation region with length 0(L Re—3/8), in which the pres-
sure rises to the plateau level (P = 1.8); the plateau region of
constant pressure with length 0(L); and the reattachment region
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with length O(L Re—!/2), in which the pressure rises from the
plateau level to its final value with mainstream parallel to the
ramp.

FPigure 3 illustrates results of computations based on the
above asymptotic theory. The experimental data are taken from
reference 12. The flow conditions were Mso = 2.55, Res = 200,000
based on ‘the distance L from leading edge to corner. This compari-
son shows that the pressure levels predicted by the theory are very
good, although the initiation of the pressure rise is predicted
somewhat early. For comparison, it may be noted that momentum-
integral interaction theories exhibit a similar uncertainty in the
point of initiation of the pressure rise, which 1s usually chosen
to best agree with experiment. A similar adjustment of the theory
could be made in figure 3 by means of an arbitrary origin shift in
the asymptotic formulas.

A composite theory for finite Reynolds number is provided by
the compressible boundary-layer equations coupled with a pressure-
displacement condition. This set of equations includes all the
terms from the Navier-Stokes equations that are included in the
governing equations for each of the three regions l1dentified by the
asymptotic theory. A finite-difference algorithm of these inter-
acting boundary-layer equations has been programmed by Werle and
Vatsa (ref. 13). Their experience has shown that at high Reynolds
numbers, accurate solutions can be obtained only by choosing the
mesh size smaller than the length scales given by triple-deck
theory, and in that case, the interacting boundary-layer solutions
asymptote the triple-~deck results for very large Reynolds numbers
(ref. 8). As indicated in figure 4, at lower Reynolds numbers of
practical interest, the interacting boundary-layer solutions agree
guite well with both experimental data (ref. 14) and with solutions
of the Navier-Stokes equations (ref. 15). The flow conditions were
adiabatic with Me = 4, Rew = 68,000 based on distance to the
corner. The presence of the plateau "kink", present in both the
experimental data and Navier-Stokes solutions, but not evident in
the interacting boundary-layer results, 1s caused by the sharp
corner which was slightly rounded in the modelling of Werle and
Vatsa. Otherwise the agreement is excellent, and it can be con-
cluded that the interacting boundary-layer theory models weakly
separated flows with accuracy satisfactory for engineering pur-
poses. It should be noted, however, that the asymptotic theory
indicates that normal pressure gradients, not present in the
boundary-layer model, become important near reattachment when the
separation bubble is large.

TRAILING EDGE STUDIES

Another area of importance in aerodynamics is the problem of
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viscous interaction at a trailing edge. The sudden change-over
from the no-slip condition on the airfoil surface to the wake-
continuity condition produces a significant viscous modification
to the flow near the trailing edge, even for a flat plate at zero
incidence. For the airfoil at incidence, 1lift is reduced due to
viscous alteration of the Xutta condition. For unsteady motion,
viscous phase effects may alter flutter boundaries. All these
problems have been treated using triple-deck theory.

A schematic of the triple-deck structure is given in figure 5
for the case of an airfoll at zero incidence. The triple deck on
the upper surface is reflected symmetrically below the airfoil.

In classical boundary-layer theory, the viscous correction to the
potential flow would produce a singularity in the pressure at the
trailing edge, owing to the singular slope of the displacement
thickness produced by the abrupt change of viscous boundary condi-
tion at the trailing edge. The coupling of pressure and displace-
ment in the viscous-interaction theory eliminates this singularity.
The fundamental trailing-edge problem of the flat plate at zero
incidence has been solved independently by Jobe and Burggraf (ref.
16), by Veldman and van de Vooren (ref. 17), and by Melnik and
Chow (ref. 18), all for incompressible flow. In addition, the
same problem for supersonic flow has been treated by Daniels (ref.
19). A summary of the results is presented in figure 6, taken
from reference 16. Here X is the triple-deck scaled-longitudinal
coordinate, with X = 0 taken at the trailing edge, and P is the
scaled pressure, both defined as before but with the Mach number
factor, temperature ratio and Chapman—-Rubesin constant deleted.

A i%/% scaled (negative) displacement thickness, proportional to
Re~ .

The principal results indicated in figure 6 are the pressure
fall as the flow is accelerated toward the trailing edge, and the
accompanying rise of skin friction to a trailing-edge value nearly
35% greater than the Blasius value. Downstream of the trailing
edge, the rapidly rising pressure overshoots the freestream value
(P = 0) and then slowly decays for large X. The theoretical drag
coefficient, also given in figure 6, compares amazingly well with
both experimental data (10 < Re < 10,000), with RMS error of 3.5
percent over the range of the experimental data, and an error of
8 percent at Re = 1 and only 2 percent at Re = 15 when compared
with the Navier-Stokes solutions.

The theoretical wake-velocity profile (ref. 18) is compared
with experimental data (ref. 20) in figure 7. The centerline
value predicted by Goldstein's non-interacting theory is shown for
comparison. Transition to turbulence was observed to begin at a
station coinciding with the maximum of the induced pressure, indi-
cated in the figure, suggesting that viscous interaction may be
important in predicting transition in wakes.
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The case of an airfoil at angle of attack is more difficult
to treat, as the upper and lower triple decks are no longer symme-
trical. This problem has been solved for the supersonic case by
Daniels (ref. 21), and very recently for the incompressible case
by Chow and Melnick (ref. 22; see also ref. 18 for preliminary
results). The flow structure is indicated in figure 8, which is
now generalized to include the Stokes layers IIp and IIIp, which
occur in the unsteady case only. For the steady case, regions IIj
and ITIj coincide and represent the conventional boundary layer;
IVy, IVp, and 1V3 represent the triple deck, and regions Vi and Vo
are the oufter ang inner layers of the wake as deduced by Goldstein.
Viscous interaction occurs only in the triple deck, of course.
Chow and Melnik carried out the flat-plate triple-deck solution
for a range of angles-of-attack up to a value very near the stall
1limit og, which was estimated by extrapolating their solutions to
zero shear stress on the upper surface. Below stall, the point of
minimum shear stress occurs ahead of the trailing edge, but
approaches the trailing edge in the stall 1imit. The reduction in
1ift coefficient due to viscous interaction is shown in figure 9.
Chow and Melnik conclude that the stall is catastrophic, with
ACT, Re~3/8 » » in the double limit Re + =, a - dg. However, this
point is not yet definitely resolved.

The viscous flow about the trailing edge of a rapidly oscilla-
ting plate has been studied by Brown and Daniels (ref. 23). They
find that to have an unsteady contribution of viscous interaction
to the potential flow, the oscillation frequency, in either pitch-
ing or plunging motion, must satisfy S = w¥L/u¥_, = 0(Rel/*) where
I, is the plate length. For S large, even on this scale, there
results two contributions to the unsteady 1lift having phase leads
of 45° and 90°, with similar results for the moment. Further de-
tails of the analysis may be found in reference 23.

CONCLUDING REMARKS

The examples of viscous interaction theory summarized above
should give the reader some idea of the contributions being made
by modern boundary-layer theory that were not possible in classi-
cal theory. Many other examples could be given, such as leading
edge separation bubbles, mass injection effects, swept configura-
tions, and more, but space does not permit further discussion here.
It is hoped that the reader has gained some appreciation for the
potential of this rapidly expanding field of study.

1442




10.

11.

12.

13.

14,

15.
16.

17.

REFERENCES

Crocco, L., and Lees, L.: J. Aero. Sci., Vol. 19, 1952, p. 649.
Lees, L., and Reeves, B.: AIAA J., Vol. 2, 1964, p. 1907.

Stewartson, K., and Williams, P. G.: Proc. Roy. Soc. A, Vol.
312, 1969, pp. 181-206.

Neiland, V.: Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4,
1969, p. hLo.

Stewartson, K.: Mathematika, Vol. 16, 1969, p. 106.

Messiter, A. F.: SIAM J. Appl. Math., Vol. 18, 1970, p. 241.
Jenson, R., Burggraf, O. R., and Rizzetta, D.: Proc. 4th Int.
Conf. on Numerical Methods in Fluid Dynamics, Lecture Notes in
Physics, Vol 35, Springer~Verlag, 1975, p. 218.

Rizzetta, D.: Asymptotic Solution for Two-Dimensional Viscous
Supersonic and Hypersonic Flows past Compression and Expansion
Corners, Ph.D. Dissertation,.Ohio State Univ., June 1976.
Williams, P. G.: Proc. 4th Int. Conf. on Numerical Methods in
Fluid Dynamics, Lecture Notes in Physics, Vol. 35, Springer-
Verlag, 1975, p. 4U5,

Burggraf, O. R.: Proc. AGARD Symp. on Flow Separation, held in
Gottingen, Germany, AGARD-CP-168, 1975.

Chapman, D. R., Kuehn, D., and Larsen, H.: NACA Rep. 1356, 1958.

Nielsen, J., Lynes, L., and Goodwin, F.: USAF FDL TR-65-107,
1965.

Werle, M. J., and Vatsa, V. N.: AIAA J., Vol. 12, 1974,
pp. 1491-1497.

Lewis, J. E., Kubota, T., and Lees, L.: AIAA J. Vol. 6, 1968,
pp. T7-14.

Carter, J. E.: NASA TR-R-385, 1972.

Jobe, C. E., and Burggraf, O. R.: Proc. Roy. Soc. A, Vol. 340,
1974, pp. 91-111.

Veldman, A.E.P., and van de Vooren, A. I.: Proc. l4th Int.

Conf. on Numerical Methods in Fluid Dynamics, Lecture Notes in
Physics, Vol. 35, Springer-Verlag, 1975, p. 423.

1443



18. Melnik, R. E., and Chow, R.: NASA SP-347, 1975.

19. Daniels, P. G.: Quart, J. Mech. Appl. Math., Vol. 27, pt. 2,
May 1974, pp. 175-191.

20. Sato, H., and Kuriki, K.: J. Fluid Mech., Vol. 11, pt. 3, 1961,

pp. 321-352.
21, ganiels, P. G.: J. Fluid Mech., Vol. 63, pt. 4, 1974, pp. 641~
56.

22. Chow, R., and Melnik, R. E.: Proc. 5th Int. Conf. on Numerical
Methods in Fluid Dynamics, Lecture Notes in Physics, Springer-
Verlag, 1977.

23. Brown, S. N., and Daniels, P. G.: J. Fluid Mech., Vol. 67,
pt. 4, 1975, pp. T43-761.

1444




Figure 1.- Schematic of triple deck.
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Figure 2.- Compression-ramp pressure distribution.
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Figure 3.- Comparison of large o theory with experiment.
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Figure 5.- Triple deck at trailing edge of airfoil.
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Figure 8.~ Viscous correction to kutta condition for laminar flow.

Figure 9.~ Limit flow structure for oscillating plate.
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